Infiltration Calculations in AccuRate V2.0.2.13

Dong Chen

CSIRO Sustainable Ecosystems

9 December 2013

1. GENERAL

In AccuRate V2.0.2.13, the infiltration rate, in air changes per hour for each zone, is specified as $A + B^*v$, where v is the hourly wind speed (m/s) from the AccuRate weather files multiplied by the terrain factor specified in Eq. (1):

$$f = \left(\frac{a_b}{a_r}\right) \left(\frac{10}{h_r}\right)^{b_r} \left(\frac{h_b}{10}\right)^{b_b} \tag{1}$$

where h_b is the eaves (or roof) height (m) above ground for building height less than 9 m. If the building is higher than 9 m, then h_b is the mid-height of the zone above the ground. h_r is the mast height (m) in the reference terrain at which the wind speed was measured, a_b and b_b are the terrain constants for the building terrain (given in the table below), and a_r and b_r are the terrain constants for the reference terrain where the wind speed was measured (given in the table below). Normally wind speed is measured at an airport with a 10 m mast, so that $a_r = 1.00$ and the formula simplifies to

$$f = a_b \left(\frac{h_b}{10}\right)^{b_b}$$

(2)

	Terrain Category				
	Exposed	Open	Suburban	Urban	
а	1.00	0.85	0.67	0.47	
b	0.15	0.20	0.25	0.35	

A is the stack infiltration factor and B is the wind infiltration factor. A and B will be described in details later.

2. INFILTRATION RELATED INPUTS IN ACCURATE

Currently, in AccuRate V2.0.2.13, there are three locations for specifying infiltration related information:

- 1. In the Zone Page
- 2. In the Element External Wall Type Window and Roof Windows
- 3. In the Element External Wall Type External Doors

2.1 Zone Page Infiltration Inputs

Infiltration: The information required depends on the zone type as follows:

Zone type is not Roof Space or Sub-floor

Specify the number of infiltration-inducting items as shown below.

Infiltration		
	No. Unsealed	No. Sealed
Chimneys:	0	0
Wall/Ceiling Vents:	0	
Exhaust Fans:	1 🚔	0
Vented Downlights:	4 🗬	
Unflued Gas Heaters:	0	
-		

Zone type is Roof Space

Sarking:	Unsarked	•
Roof Surface:	Discontinuous (e.g. tiles)	•
Openness:	Standard	•

Sarking: Choose 'Sarked' or 'Unsarked'. Sarked means that a continuous layer of sarking material is installed underneath the roof cladding (it need not be low-emissivity). Choosing Sarked imposes a lower infiltration rate than does Unsarked. Roof Surface: Choose from 'Continuous' or 'Discontinuous'. Discontinuous indicates that there are gaps in the roof construction, and imposes a higher infiltration rate than does Continuous.
 Openness: Choose from 'Standard', 'Ventilated' or 'Highly Ventilated'. Standard indicates that no specific ventilation openings are provided. Ventilated indicates that purpose-built ventilation openings are provided. Highly Ventilated indicates that the roof space is very well ventilated with large openings.

Zone type is Sub-floor

Infiltration					
Openness:	Enclosed				
Is there a wall cavity allowing unobstructed air flow between the subfloor and roofspace or outdoors?					
	C Yes ⊙ No				
Area of subfloor	r ventilation openings 6000 💌 mm²/m				

Openness: Choose from 'Enclosed', 'Open' or 'Very Open'. 'Enclosed' indicates that the only

ventilation openings are those required for compliance with building codes (see below).

'Open' indicates that additional openings are provided for ventilation.

'Very Open' indicates that the sub-floor space is very well ventilated with large openings.

Is there a wall cavity..: Only relevant if Openness = 'Enclosed'. Select Yes or No. If No is selected, the sub-floor infiltration rate is estimated from the area of ventilation openings (see below). If Yes is selected, the infiltration rate will be higher, but is not yet well understood. For this version of AccuRate, the infiltration rate assumed is equal to that used in NatHERS.

Area of sub-floor

ventilation openings: Choose from one of the available values. Units are mm²/(m of sub-floor wall). Check the relevant building code to determine an appropriate value.

2.2 Window Infiltration Inputs

Window details

# Selected Win	dows							×
Zone	Wall	Window	Туре	0	Construction		Height	Wic
Kitchen/Family/Mea	1	W7	Awning	0	àeneric: Aluminum Fra	me: 3mm Clear	1.80	1.20
Common Propertie	s of Se	lected Windows						
Name:	W7				Fixed Shade:	None	•	
Туре:	Awnir	ng	•		Wall Shaded By:	Eaves		
Construction:	Gene	ric: Aluminum Frar	ne: 3mm Clear 💌		Indoor Covering:	Venetian blinds	•	
Height:	1.80	🕈 m Wid	ith: 1.20 🌻 m		Outdoor Covering:	None	•	
Head Height:	2.10				Openable:	30 🔹 %		
Horizontal Offset:	5.00		eatherStripped: 🔽 ect Screens: 🔽		Gap Size OSmall ⊙ №	4edium O Large	,	
					<u>≁ 0</u> k 🔰	<u>Cancel</u>	<u>H</u> elp	

WeatherStripped: Check the box if the window has been weather stripped. If the box is checked, the Gap Size radio buttons are disabled and the Gap Size is set to Small.

Gap Size: This allows you to specify the size of gaps around the window frame.

Small: Very tight fit *Medium:* Paper fits into gap *Large:* Credit card fits into gap

2.3 Door Infiltration Inputs

Door details

🗊 Selected Door	s								×
Zone	Wall	Door	Construction			Height	Width	Area	Azimuth
Kitchen/Family/Meal	1					2.10	0.82	1.72	239
•									►
Common Properties	s of Se	lected Doors							
Name:	Main	door			Wall Shaded By:	Eave	s		
Construction:	Timbe	er (hollow)		•					
Height:	2.10	🕈 m Wic	ith: 0.82 🍨	m					
Horizontal Offset:	0.5	▲ ▼							
					Openable:	100	-	%	
					Insect Screens:	₽			
		We	atherStripped:		Gap Size	Media	um C) Large	,
					√ <u>0</u> k	💢 <u>C</u> an	cel	Ø	Help

WeatherStripped: Check the box if the door has been weather stripped. If the box is checked, the Gap Size radio buttons are disabled and the Gap Size is set to Small.

Gap Size panel: This allows you to specify the size of gaps around the door.

Small: 5 mm Medium: 10mm Large: 15mm

3. STACK AND WIND INFILTRATION FACTORS

3.1 Zones not of type roofspace or not of type subfloor

BaseStack_Factor = 0.011554; BaseWind_Factor = 0.003851;

DownLightStack_Factor = 1.00909; DownLightWind_Factor = 0.0;

ExhaustFanStack_FactorSealed = 1.12; ExhaustFanWind_FactorSealed = 0.0;

ExhaustFanStack_FactorUnsealed = 5.6; ExhaustFanWind_FactorUnsealed = 0.0;

FirePlaceStack_FactorSealed = 1.002; FirePlaceWind_FactorSealed = 4.34478;

FirePlaceStack_FactorUnsealed = 16.7; FirePlaceWind_FactorUnsealed = 72.41294;

WallVentStack_Factor = 1.39; WallVentWind_Factor = 1.193555;

VentedSkylightStack_Leak = 11.1; VentedSkylightWind_Leak = 8.9824;

UnsealedWindowStack_FactorLargeGap = 0.157153; UnsealedWindowWind_FactorLargeGap = 0.052384; UnsealedWindowStack_FactorMediumGap = 0.073954; UnsealedWindowWind_FactorMediumGap = 0.024651; UnsealedWindowStack_FactorSmallGap = 0.046225; UnsealedWindowWind_FactorSmallGap = 0.015408;

SealedWindowStack_Factor = 0.032354; SealedWindowWind_Factor = 0.010785;

SealedExternalDoorStack_Factor = 0.25434; SealedExternalDoorWind_Factor = 0.08478;

UnsealedExternalDoorStack_FactorLargeGap = 2.79778; UnsealedExternalDoorWind_FactorLargeGap = 0.93259; UnsealedExternalDoorStack_FactorMediumGap = 1.74861; UnsealedExternalDoorWind_FactorMediumGap = 0.58287; UnsealedExternalDoorStack_FactorSmallGap = 0.95378; UnsealedExternalDoorWind_FactorSmallGap = 0.31793; DwellingStack_FactorDwellingWeatherstripped = 0.011556; DwellingWind_FactorDwellingWeatherstripped = 0.003852;

DwellingStack_FactorDwellingUnweatherstripped = 0.027733; DwellingWind_FactorDwellingUnweatherstripped = 0.009245;

Assuming Dwelling unweatherstripped: WindowFrameStack_Factor = 0.035759; WindowFrameWind_Factor = 0.01192;

BaseStackLeak := znFloorArea * BaseStack_Factor; BaseWindLeak := znFloorArea * BaseWind_Factor;

DownLightStackLeak := znIFnumVentDownlights * DownLightStack_Factor; DownLightWindLeak := znIFnumVentDownlights * DownLightWind_Factor;

ExhaustFanStackLeak := znIFnumExhaustFansSealed * ExhaustFanStack_FactorSealed + znIFnumExhaustFansUnsealed * ExhaustFanStack_FactorUnsealed;

ExhaustFanWindLeak := znIFnumExhaustFansSealed * ExhaustFanWind_FactorSealed + znIFnumExhaustFansUnsealed * ExhaustFanWind_FactorUnsealed;

FirePlaceStackLeak := znIFnumChimneysSealed * FirePlaceStack_FactorSealed + znIFnumChimneysUnsealed * FirePlaceStack_FactorUnsealed;

FirePlaceWindLeak := znIFnumChimneysSealed * FirePlaceWind_FactorSealed + znIFnumChimneysUnsealed * FirePlaceWind_FactorUnsealed;

GasHeaterStackLeak := znIFnumUnfluedGasHeaters * 5.3 * WallVentStack_Factor; (5.3 gives 7.3 l/s for stack due to additional vents as required by WA)

GasHeaterWindLeak := znIFnumUnfluedGasHeaters * 8.8 * WallVentWind_Factor; (8.8 gives 10.6v l/s for wind due to additional vents as required by WA)

WallVentStackLeak := znIFnumWallCeilingVents * WallVentStack_Factor; WallVentWindLeak := znIFnumWallCeilingVents * WallVentWind_Factor;

For Zone lit by vented skylights

SkylightStackLeak := NumberVentedSkylights * VentedSkylightStack_Leak; SkylightWindLeak := NumberVentedSkylights * VentedSkylightWind_Leak;

If Door WeatherStripped

ExternalDoorStackLeak := SealedExternalDoorStack_Factor + DwellingStack_FactorDwellingUnweatherstripped;

ExternalDoorWindLeak := SealedExternalDoorWind_Factor + DwellingWind_FactorDwellingUnweatherstripped;

If Door not WeatherStripped ExternalDoorStackLeak := DoorStackFactorGapSize + DwellingStack_FactorDwellingUnweatherstripped; ExternalDoorWindLeak := DoorWindFactorGapSize + DwellingWind_FactorDwellingUnweatherstripped; If Window WeatherStripped WindowStackLeak := self.znFloorArea * (AWindow.elArea/TotalWindowArea)* SealedWindowStack_Factor;

WindowWindLeak := self.znFloorArea *

(AWindow.elArea/TotalWindowArea)* SealedWindowWInd_Factor;

If Window not WeatherStripped WindowStackLeak := self.znFloorArea * (AWindow.elArea/TotalWindowArea)* WindowStackFactorGapSize; WindowWindLeak := self.znFloorArea * (AWindow.elArea/TotalWindowArea)* WindowWindFactorGapSize;

Here, AWindow.elArea is the area of one window; TotalWindowArea is the total window area of this zone. So, the above calculation needs to be carried out for each window in this zone.

WindowFrameStackLeak := WindowFrameStack_Factor * self.znFloorArea; WindowFrameWindLeak := WindowFrameWind_Factor * self.znFloorArea;

The total infiltration air change rate due to stack pressure and wind pressure are calculated as

TotalStackLeak := BaseStackLeak + DownLightStackLeak + ExhaustFanStackLeak + FirePlaceStackLeak + GasHeaterStackLeak + WallVentStackLeak + SkylightStackLeak +1.5*WindowStackLeak + 1.5*WindowFrameStackLeak + 1.5*ExternalDoorStackLeak;

TotalWindLeak := BaseWindLeak + DownLightWindLeak + ExhaustFanWindLeak + FirePlaceWindLeak + GasHeaterWindLeak + WallVentWindLeak + SkylightWindLeak +1.5*WindowWindLeak + 1.5*WindowFrameWindLeak + 1.5*ExternalDoorWindLeak;

Zone stack infiltration factor (A) and wind infiltration factor (B) are calculated as:

A = TotalStackLeak *3.6/znVolume B = TotalWindLeak *3.6/znVolume

3.2 Zones of type roofspace

Roof space air change rate is calculated as $A + B^*v$, where v is the hourly wind speed (m/s) from the AccuRate weather file, multiplied by the terrain factor as specified in Eq. (1). The stack infiltration factor (A) and wind infiltration factor (B) are determined by the construction of the roof space as following:

3.2.1 Unsarked Roofspace with Continuous roof surface

Standard Openness:	A = 2 ,	B = 1
Ventilated Openness:	A = 10,	B = 10
Highly Ventilated Openness:	A = 20,	B = 30

3.2.2 Unsarked Roofspace with Discontinuous roof surface

Standard Openness:	A=6 ,	B = 2.5
Ventilated Openness:	A = 10,	B = 10
Highly Ventilated Openness:	A = 20,	B = 30

3.2.3 Sarked Roofspace with Continuous roof surface

Standard Openness:	A = 2 ,	B = 1
Ventilated Openness:	A = 10,	B = 10
Highly Ventilated Openness:	A = 20,	B = 30

3.2.4 Sarked Roofspace with Discontinuous roof surface

Standard Openness:	A = 2 ,	B = 1
Ventilated Openness:	A = 10,	B = 10
Highly Ventilated Openness:	A = 20,	B = 30

3.3 Zones of type subfloor

Subfloor air change rate is calculated as $A + B^*v$, where v is the hourly wind speed (m/s) from the AccuRate weather file, multiplied by the terrain factor as specified in Eq. (1). The stack infiltration factor (A) and wind infiltration factor (B) are determined by the construction of the subfloor as following:

3.3.1 Subfloor Without Wall Cavity

```
Enclosed: A = 0.00009612 * znPerimeter *
znAreaSubFloorVentilationOpenings /
(znFloorArea*znCeilingHeight)
```

B = 0.0003046 * znPerimeter * znAreaSubFloorVentilationOpenings * ShieldingFactor / (znFloorArea * znCeilingHeight)

Where the ShieldingFactor is listed in the following table.

Site Exposure	ShieldingFactor
Exposed	0.88
Open	0.74
Suburban	0.57
Protected	0.31

Open:	A = 6,	B = 2.5
Very Open:	A = 100,	B = 30

3.3.2 Subfloor With Wall Cavity

Enclosed:	A = 3 ,	B = 1
Open:	A = 6,	B = 2.5
Very Open:	A = 100,	B = 30